top of page

# Remote learning support

Public·52 members

# Differential Geometry And Mathematical Physics:...

The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

## Differential Geometry and Mathematical Physics:...

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structure. For example, in Riemannian geometry distances and angles are specified, in symplectic geometry volumes may be computed, in conformal geometry only angles are specified, and in gauge theory certain fields are given over the space. Differential geometry is closely related to, and is sometimes taken to include, differential topology, which concerns itself with properties of differentiable manifolds which do not rely on any additional geometric structure (see that article for more discussion on the distinction between the two subjects). Differential geometry is also related to the geometric aspects of the theory of differential equations, otherwise known as geometric analysis.

Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics. Outside of physics, differential geometry finds applications in chemistry, economics, engineering, control theory, computer graphics and computer vision, and recently in machine learning.

The history and development of differential geometry as a subject begins at least as far back as classical antiquity. It is intimately linked to the development of geometry more generally, of the notion of space and shape, and of topology, especially the study of manifolds. In this section we focus primarily on the history of the application of infinitesimal methods to geometry, and later to the ideas of tangent spaces, and eventually the development of the modern formalism of the subject in terms of tensors and tensor fields.

The study of differential geometry, or at least the study of the geometry of smooth shapes, can be traced back at least to classical antiquity. In particular, much was known about the geometry of the Earth, a spherical geometry, in the time of the ancient Greek mathematicians. Famously, Eratosthenes calculated the circumference of the Earth around 200 BC, and around 150 AD Ptolemy in his Geography introduced the stereographic projection for the purposes of mapping the shape of the Earth. Implicitly throughout this time principles that form the foundation of differential geometry and calculus were used in geodesy, although in a much simplified form. Namely, as far back as Euclid's Elements it was understood that a straight line could be defined by its property of providing the shortest distance between two points, and applying this same principle to the surface of the Earth leads to the conclusion that great circles, which are only locally similar to straight lines in a flat plane, provide the shortest path between two points on the Earth's surface. Indeed the measurements of distance along such geodesic paths by Eratosthenes and others can be considered a rudimentary measure of arclength of curves, a concept which did not see a rigorous definition in terms of calculus until the 1600s.

There was little development in the theory of differential geometry between antiquity and the beginning of the Renaissance. Before the development of calculus by Newton and Leibniz, the most significant development in the understanding of differential geometry came from Gerardus Mercator's development of the Mercator projection as a way of mapping the Earth. Mercator had an understanding of the advantages and pitfalls of his map design, and in particular was aware of the conformal nature of his projection, as well as the difference between praga, the lines of shortest distance on the Earth, and the directio, the straight line paths on his map. Mercator noted that the praga were oblique curvatur in this projection. This fact reflects the lack of a metric-preserving map of the Earth's surface onto a flat plane, a consequence of the later Theorema Egregium of Gauss.

The first systematic or rigorous treatment of geometry using the theory of infinitesimals and notions from calculus began around the 1600s when calculus was first developed by Gottfried Leibniz and Isaac Newton. At this time, the recent work of René Descartes introducing analytic coordinates to geometry allowed geometric shapes of increasing complexity to be described rigorously. In particular around this time Pierre de Fermat, Newton, and Leibniz began the study of plane curves and the investigation of concepts such as points of inflection and circles of osculation, which aid in the measurement of curvature. Indeed already in his first paper on the foundations of calculus, Leibniz notes that the infinitesimal condition d 2 y = 0 \displaystyle d^2y=0 indicates the existence of an inflection point. Shortly after this time the Bernoulli brothers, Jacob and Johann made important early contributions to the use of infinitesimals to study geometry. In lectures by Johann Bernoulli at the time, later collated by L'Hopital into the first textbook on differential calculus, the tangents to plane curves of various types are computed using the condition d y = 0 \displaystyle dy=0 , and similarly points of inflection are calculated. At this same time the orthogonality between the osculating circles of a plane curve and the tangent directions is realised, and the first analytical formula for the radius of an osculating circle, essentially the first analytical formula for the notion of curvature, is written down.

Later in the 1700s, the new French school led by Gaspard Monge began to make contributions to differential geometry. Monge made important contributions to the theory of plane curves, surfaces, and studied surfaces of revolution and envelopes of plane curves and space curves. Several students of Monge made contributions to this same theory, and for example Charles Dupin provided a new interpretation of Euler's theorem in terms of the principle curvatures, which is the modern form of the equation.

The field of differential geometry became an area of study considered in its own right, distinct from the more broad idea of analytic geometry, in the 1800s, primarily through the foundational work of Carl Friedrich Gauss and Bernhard Riemann, and also in the important contributions of Nikolai Lobachevsky on hyperbolic geometry and non-Euclidean geometry and throughout the same period the development of projective geometry.

Dubbed the single most important work in the history of differential geometry, in 1827 Gauss produced the Disquisitiones generales circa superficies curvas detailing the general theory of curved surfaces. In this work and his subsequent papers and unpublished notes on the theory of surfaces, Gauss has been dubbed the inventor of non-Euclidean geometry and the inventor of intrinsic differential geometry. In his fundamental paper Gauss introduced the Gauss map, Gaussian curvature, first and second fundamental forms, proved the Theorema Egregium showing the intrinsic nature of the Gaussian curvature, and studied geodesics, computing the area of a geodesic triangle in various non-Euclidean geometries on surfaces.

The development of intrinsic differential geometry in the language of Gauss was spurred on by his student, Bernhard Riemann in his Habilitationsschrift, On the hypotheses which lie at the foundation of geometry. In this work Riemann introduced the notion of a Riemannian metric and the Riemannian curvature tensor for the first time, and began the systematic study of differential geometry in higher dimensions. This intrinsic point of view in terms of the Riemannian metric, denoted by d s 2 \displaystyle ds^2 by Riemann, was the development of an idea of Gauss' about the linear element d s \displaystyle ds of a surface. At this time Riemann began to introduce the systematic use of linear algebra and multilinear algebra into the subject, making great use of the theory of quadratic forms in his investigation of metrics and curvature. At this time Riemann did not yet develop the modern notion of a manifold, as even the notion of a topological space had not been encountered, but he did propose that it might be possible to investigate or measure the properties of the metric of spacetime through the analysis of masses within spacetime, linking with the earlier observation of Euler that masses under the effect of no forces would travel along geodesics on surfaces, and predicting Einstein's fundamental observation of the equivalence principle a full 60 years before it appeared in the scientific literature. 041b061a72